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Abstract: The bivariate relationships between brain structure, age, and episodic memory perfor-

mance are well understood. Advancing age and poorer episodic memory performance are each as-

sociated with smaller brain volumes and lower cortical thickness measures, respectively. Advancing 

age is also known to be associated with poorer episodic memory task scores on average. However, 

the simultaneous interrelationship between all three factors—brain structure, age, and episodic 

memory—is not as well understood. We tested the hypothesis that the preservation of episodic 

memory function would modify the typical trajectory of age-related brain volume loss in regions 

known to support episodic memory function using linear mixed models in a large adult lifespan 

sample. We found that the model allowing for age and episodic memory scores to interact predicted 

the hippocampal volume better than simpler models. Furthermore, we found that a model including 

a fixed effect for age and episodic memory scores (but without the inclusion of the interaction term) 

predicted the cortical volumes marginally better than a simpler model in the prefrontal regions and 

significantly better in the posterior parietal regions. Finally, we observed that a model containing 

only a fixed effect for age (e.g., without the inclusion of memory scores) predicted the cortical thick-

ness estimates and regional volume in a non-memory control region. Together, our findings provide 

support for the idea that the preservation of memory function in late life can buffer against typical 

patterns of age-related brain volume loss in regions known to support episodic memory. 

Keywords: episodic memory; adult lifespan; structural neuroimaging; hippocampal volume;  

cortical thickness 

 

1. Introduction 

Aging is associated with many physical and cognitive changes, including changes in 

episodic memory performance (see [1] for an overview). Healthy older adults on average 

self-report having more problems with their memory than they used to [2,3] and rate their 

memories as poorer than those of younger adults [4]. Although only a small subset of 

older adults meet the criteria for a diagnosis of clinical memory impairment, such as mild 

cognitive impairment or Alzheimer’s disease [5], many older adults nonetheless report 

experiencing distress over age-related memory problems [6]. 

However, not all older adults exhibit significant late-life decline in episodic memory 

performance. For example, research with Super Agers, or adults aged 80+ years who ex-

hibit episodic memory performance on par with adults aged 50–65 [7], demonstrated the 

potential for the relative preservation of episodic memory function into late life. Together 

with their superior episodic memory ability compared with their average-for-age peers, 

Super Agers also possess higher cortical thickness estimates [7] and slower rates of cortical 

volume loss [8]. Importantly, the extent to which these beneficial neural markers observed 

in Super Agers may extend to a sample of cognitively normal older adults with better-

than-average memory (but who may not qualify for Super Ager status) is not yet clear. 
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Moreover, the extent to which preservation of episodic memory function into late life is 

associated with benefits for the neurobiological underpinnings of episodic memory (e.g., 

hippocampus, prefrontal cortex, and posterior parietal cortex; see [9]) is not yet well un-

derstood. 

In the context of normative healthy cognitive aging, older adults exhibit a wide de-

gree of variability in episodic memory scores, and some older adults exhibit better-than-

average memory function into late life [10]. Even in episodic memory domains where 

older adults are expected to suffer the largest changes in memory performance, some 

older adults exhibit remarkable stability of function over the adult lifespan [11]. Together, 

these data suggest that while memory decline in late life is common, it is not a foregone 

conclusion that all older adults will experience distressing levels of memory loss. A key 

question is what differentiates those who exhibit preservation of function into late life 

compared with those who experience normative, non-clinical age-related changes in 

memory. 

1.1. Brain Structures Supporting Episodic Memory 

Early evidence for the structural correlates of episodic memory come from studies in 

patients with brain lesions. For example, groundbreaking case studies of patients H.M. 

(see [12] for a description) and K.C. (see [13] for a description) advanced our early under-

standing of brain structures important for supporting episodic memory [14,15], and this 

tradition has continued to inform our understanding of the neural substrates of episodic 

memory to this day [16–18]. At the same time, beginning in the mid-1990s, functional neu-

roimaging techniques became more widely available and served to expand the under-

standing of the cortical and subcortical regions supporting episodic memory processes. 

Importantly, this technique allowed for the investigation of brain activity during memory 

tasks in healthy, cognitively normal adults. The results of these studies served to both 

confirm earlier understanding of subcortical brain regions important for episodic memory 

from lesion case studies as well as shed light on additional cortical regions involved in 

episodic memory processes [9]. Importantly, functional imaging studies revealed the crit-

ical roles of the prefrontal cortex and posterior parietal cortex in the selection and retrieval 

of information in episodic memory (see [19,20] for reviews). 

At the same time, the utility of fMRI data for understanding cognitive functioning 

for older adults can be somewhat limited. For example, older adults are known to exhibit 

lower rates of trial-by-trial BOLD variability compared with young adults [21–24], and the 

reduction in trial-by-trial variability in the BOLD signal for older individuals may reduce 

the sensitivity of this measure to different cognitive operations and processes. As such, 

the conclusions drawn about neurocognitive functioning in older adults can depend quite 

substantially on the selection of the measures [25]. 

More recently, there has been interest in how individual differences in structural 

brain correlates might relate to cognitive functioning from a broad definition. Specifically, 

studies have shown that better episodic memory scores have been associated with larger 

regional volume estimates in the hippocampus [26] and prefrontal cortex [27]. In addition,  

posterior parietal regions have been shown to exhibit high levels of activity during 

memory tasks [28,29]. Moreover, functional connectivity in the medial temporal lobe (in-

cluding the hippocampus) and portions of the prefrontal and parietal cortices have shown 

stronger coupling in well-performing older adults in a variety of memory tasks (reviewed 

in [30]). Thus, as one of our aims, we sought to extend past work by examining prefrontal 

and posterior parietal cortical volumes rather than activity, as the volumes in these re-

gions relate to episodic memory performance across the adult lifespan. Finally, lower cor-

tical thickness estimates in healthy older adults are associated with poorer episodic 

memory functioning [31]. Importantly, regional volumes may be more closely associated 

with performance in relevant cognitive domains (see e.g., [26,27]), whereas cortical thick-

ness may be taken as a global marker of brain health (see e.g., [32]), as implicated in 

memory. 



Int. J. Environ. Res. Public Health 2022, 19, 4364 3 of 13 
 

 

1.2. Open Questions and the Current Study 

To date, each of the bivariate relationships between age, cortical thickness, and gray 

matter volumes of relevant regions and episodic memory performance are well under-

stood. However, the relationship between all three factors (age, cortical thickness, and 

gray matter volume with episodic memory performance) is not understood as well. To 

this end, we modeled age and episodic memory performance together to predict the gray 

matter volumes in regions known to support episodic memory in an adult lifespan sam-

ple. We further tested this relationship in a more global brain measure (i.e., cortical thick-

ness) and, as a control comparison, in a non-memory region (i.e., putamen). We antici-

pated that models allowing for an interaction of age and episodic memory scores would 

best predict the gray matter volumes in the relevant brain regions (e.g., hippocampus, 

prefrontal cortex, and posterior parietal cortex). We further predicted that this pattern 

would be specific to regions known to support episodic memory function. 

2. Material and Method 

2.1. Participants 

The current study includes data from a subsample of adults from the larger Nathan 

Kline Institute-Rockland Sample (NKI-RS) study initiative. The secondary data analysis 

plan and procedure for data obtained under the NKI-RS sample reported here were re-

viewed and approved by the Stony Brook University Institutional Review Board. Volun-

teers for the NKI-RS were recruited from Rockland County, New York, a suburban and 

rural county 20 miles northwest of New York City [33]. Rockland County has a population 

of 311,687 per the 2010 Census (U.S. Census Bureau, 2011). The full NKI-RS dataset in-

cludes participant ages ranging from 6 to 85 years of age. The participants in the NKI-RS 

studies completed a wide variety of behavioral measures and self-report inventories, in 

addition to taking part in MRI neuroimaging studies (for a detailed description of the 

included measures, see [33]). The NKI-RS is comprised of various sub-studies, under 

which the tasks and imaging parameters differed depending on the sub-study focus. The 

NKI-RS data selected for analysis in the current manuscript included participants drawn 

from two adult sub-studies under the larger NKI-RS initiative (Discovery and Neurofeed-

back) based on the tasks and imaging parameters of interest in our study. 

Of note, the participants included in the current analysis comprised a large swath of 

the adult lifespan (participants aged 19+ years of age). The current sample (n = 313) con-

sisted of 210 female (67%) and 103 male (33%) participants, with a mean age of 52.62 (SD 

= 18.51, range = 19–85 years). The participants had an average of 15.79 years of education 

(SD = 2.30, range = 11–24 years; education data missing for 3 participants). The current 

sample was 79% White, 14% Black, 5% Asian, and 0.6% American Indian or Alaskan Na-

tive (1.6% of participants indicated “other race”), with 8.31% of participants reporting His-

panic or Latino ethnicity. 

Exclusion Criteria for Current Study 

In order to test our hypotheses of interest in a sample of cognitively normal adults, 

data from participants who reported having previously been diagnosed with any of the 

following were excluded: neurodegenerative disorder, neurological disorder, pervasive 

developmental disorder, major primary psychiatric disorder, acquired immunodeficiency 

syndrome, or stroke. In addition, data from participants who reported having previously 

sustained a serious head injury with loss of consciousness were excluded. After removing 

data from participants with disorders known to impact neurological markers or cognitive 

performance, 95.53% of our sample self-reported generally being in good health. Of the 

remaining participants (n = 14) who reported not being in good health, only 1.92% of our 

sample (n = 6) reported that their self-reported poor health had a large impact on their 

daily life. 
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2.2. MRI Data Acquisition 

The structural neuroimaging data of interest to the current study were collected at 

the Nathan Kline Institute for Psychiatric Research. The participants underwent a T1-

weighted three-dimensional MP-RAGE scan collected with a Siemens Trio 3.0 T scanner. 

The acquisition parameters for high-resolution gray matter imaging differed slightly 

across sub-studies (Discovery sub-study: TR = 1900 ms, TE = 2.52 ms, flip angle = 9°, FoV 

= 250 mm; Neurofeedback sub-study: TR = 2600 ms; TE = 3.02 ms, flip angle = 8°, FoV = 

256 mm). All T1-weighted images were obtained with 1-mm isotropic voxels. Volumetric 

analyses in sub-samples of participants with slightly different image acquisition parame-

ters have been previously reported [34], so participants who completed our relevant 

measures of interest were included for analysis in the current study regardless of sub-

study enrollment. 

2.3. Cortical and Subcortical Segmentation 

Automated segmentation of the T1-weighted image for each participant was per-

formed using FreeSurfer [35–37]. Each scan was processed on the same computer and op-

erating system (Linux Ubuntu 18.0) using the “recon-all” command with default system 

settings to obtain subcortical segmentation. Cortical segmentation was conducted using 

the Desikan–Killiany cortical atlas to create cortical parcellation statistics for each cortical 

structure [38]. 

Quality Control Procedure 

Upon completion of the automated segmentation for all imaging data, each scan was 

reviewed to ensure accuracy for segmentation using FreeSurfer’s recommended quality 

control procedures (see http://surfer.nmr.mgh.harvard.edu/fswiki/, or see [39] for a simi-

lar approach). In brief, the following errors were manually searched for and identified 

using Freesurfer’s Freeview: Skull strip errors, segmentation errors, intensity normaliza-

tion errors, pial surface misplacements, and topological defects. Each file that contained 

an error and required correction was manually edited using Freesurfer’s Freeview (n = 28) 

per FreeSurfer’s recommended method, rerun, and inspected to ensure that the error no 

longer existed. All scans that initially failed quality control were successfully reprocessed 

and passed the quality control procedure on the second round. 

2.4. Behavioral Data Selection 

The selection of behavioral data began with an evaluation of the full battery of as-

sessments available from the NKI-RS. This battery contains a total of 48 behavioral 

measures and 7 cognitive tasks [33], each of which was carefully evaluated for its potential 

relevance to the research question at hand (see http://fcon_1000.projects.nitrc.org/indi/en-

hanced/assessments/master_list.html for the full list of assessments included in the NKI-

RS). Upon a thorough review, performance on the Rey Auditory Verbal Learning Task 

(RAVLT [40]) was selected as our episodic memory measure. This well-documented test 

of episodic memory involves an examiner reading aloud a list of 15 semantically unrelated 

words at the rate of 1 per second, after which the participant is asked to recall all words 

from the list that they can remember. This procedure is carried out a total of five times. 

The examiner then presents a second list of 15 unrelated words, allowing the participant 

only 1 attempt at recall of this new list. Immediately following this, the participant is asked 

to remember as many words as possible from the initial list. After a 20-min delay, the 

participant is again asked to recall as many words as possible from the initial list. The 

participant then completes a recognition memory test for items presented on the initial 

list [40]. For the purposes of the current study, the delayed list recall (e.g., 20-min delay) 

of the initial study list was selected to serve as our key measure of episodic memory. 
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2.5. Analysis and Statistical Approach 

All statistical analyses were conducted in RStudio [41]. Correlation tests were com-

puted in base R, and regressions were computed using the lme4 [42] and lmerTest [43] 

packages. Data visualizations were created using the ggplot2 [44] package. In all analyses, 

age was treated as a continuous variable. Degrees of freedom for model comparisons were 

determined using Satterthwaite approximation. 

To replicate the prior literature, we conducted a series of bivariate correlations be-

tween (1) age and scores on our key episodic memory measure (RAVLT 20-min delay), (2) 

RAVLT performance and hippocampal volume estimates, and (3) age and hippocampal 

volume estimates. We further tested the correlations between age and cortical thickness 

as well as RAVLT performance and cortical thickness. We predicted that older age would 

be associated with poorer RAVLT scores, that higher RAVLT scores would be associated 

with larger hippocampal volume and cortical thickness estimates, and that older age 

would be associated with smaller hippocampal volume estimates and lower cortical thick-

ness. 

To test our novel hypotheses that the preservation of episodic memory function 

across the adult lifespan would be related to preservation of the neurobiological substrates 

of episodic memory, including the hippocampus, prefrontal cortex, and posterior parietal 

cortex, we built linear mixed effect models to predict the volumes in these regions (cor-

rected for intracranial volume to control for the influence of head size [45]), specifying a 

random effect of sub-study in each model. Our base model (model 1) predicted brain vol-

umes in relevant regions specifying age as a fixed effect (and a random effect of the sub-

study), our second model included fixed effects for the age and RAVLT scores (and a ran-

dom effect of sub-study; model 2), and our third model specified an interaction of the 

fixed effects of age and RAVLT scores (and a random effect of sub-study; model 3). We 

predicted that models including age and memory score as predictors would explain more 

variance in the relevant regional volumes compared to a model containing age alone, in-

dicating that preservation of episodic memory function into late life is associated with the 

maintenance of brain volumes in relevant brain regions.  

To extend the past work on Super Agers regarding higher cortical thickness estimates 

for individuals displaying relative preservation of memory function into late life, we built 

a series of linear mixed models to predict cortical thickness estimates from a fixed effect 

of age (and random effect of sub-study; model 1), from fixed effects of the age and memory 

scores and a random effect of the sub-study (model 2), and from the interaction of fixed 

effects of age and memory scores (and a random effect of sub-study; model 3). If previous 

patterns identified in Super Agers extended to healthy older adults with relatively better 

average-for-age memory scores (but which may not rise to the level of Super Ager status), 

we would expect that models 2 and 3 would provide a better fit than model 1. If instead 

this pattern does not extend to the general population, model 1 would then be expected 

to provide the best fit. 

We further tested the specificity of these patterns by conducting a similar analysis for 

the putamen (corrected for intracranial volume). Though the putamen has been ascribed 

a role in stimulus–response learning (see [46] for an overview), we did not expect to ob-

serve similar patterns in this region for performance in the episodic memory task we in-

cluded. Instead, we predicted that neither models 2 (age and RAVLT score) nor 3 (inter-

action of age and RAVLT score) would fit better than the base model (model 1) predicted 

by age alone. 

3. Results 

3.1. Bivariate Correlations 

As predicted, older age was associated with poorer RAVLT scores (r (311) = −0.36, p 

< 0.001, 95% CI [−0.45, −0.26]; Figure 1a) and with smaller hippocampal volume estimates 

(r (311) = −0.28, p < 0.001, 95% CI [−0.38, −0.18]; Figure 1b), whereas higher RAVLT scores 
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were associated with larger hippocampal volume estimates corrected for the intracranial 

volume (r (311) = 0.29, p < 0.001, 95% CI [0.19, 0.39]; Figure 1c). Higher RAVLT scores were 

associated with higher estimates of cortical thickness (r (311) = 0.22, p < 0.001, 95% CI [0.11, 

0.32]), and older age was associated with lower cortical thickness estimates (r (311) = −0.56, 

p < 0.001, 95% CI [−0.63, −0.47]), which again was in line with the predictions. Importantly, 

the correlations reported here were consistent with the past literature [26,31]. 

 

Figure 1. Replication of known bivariate relationships between age, hippocampus, and memory 

scores, showing replications of known bivariate relationships: a negative relationship between age 

and memory performance (e.g., RAVLT delayed memory) (a), a negative relationship between age 

and hippocampal volume (b), and a positive relationship between memory performance (e.g., 

RAVLT delayed memory) and hippocampal volume (c). Data from the full age range of our sample 

(19–85 years) are depicted. 

3.2. Hippocampus 

When comparing the fits for hippocampal volumes (M hippocampal volume = 0.005; SD hippo-

campal volume < 0.001) from model 1 (age as the only fixed effect), model 2 (age and RAVLT 

score as fixed effects), and model 3 (interaction of the fixed effects of age and RAVLT 

score), model 2 was found to fit significantly better than model 1 (�2 (1) = 14.63, p < 0.001), 

as did model 3 compared with model 1 (�2 (2) = 18.82, p < 0.001). Model 3 also provided a 

significantly better fit to the data than model 2 (�2 (1) = 4.19, p = 0.041; see Figure 2 for a 

scatterplot depicting the relationship between RAVLT score, age, and hippocampal vol-

ume). Within model 3, both age (t (308.6) = −3.28, p = 0.001) and the interaction of age and 

memory scores (t (308.8) = 2.07, p = 0.039) were significant contributors to the overall 

model. Memory score alone (t (309.0) = −0.60, p = 0.551) was not a significant contributor 

to the model. This pattern supports our prediction that preservation of memory function 

across the adult lifespan may mitigate typical age-related volume loss in the hippocam-

pus, a region known to support episodic memory. 

a b c
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Figure 2. Scatterplot depicting memory score, age, and hippocampal volume. Note: scatterplot de-

picts novel integration of age, memory score, and hippocampal volume within a single model. The 

full age range of our sample (19–85 years) is depicted in this Figure, with data from participants 

aged under 20 years appearing in darker red colors and data from participants aged above 80 years 

appearing in brighter purple. 

3.3. Prefrontal Cortex 

Turning to the prefrontal cortex (M prefrontal cortex volume = 0.070; SD prefrontal cortex volume = 

0.007), we observed a somewhat different pattern than was observed in the hippocampus. 

Model 2 (age and RAVLT score as fixed effects) fit the data only marginally better than 

model 1 (age as the only fixed effect; �2 (1) = 3.36, p = 0.067). Model 3 (interaction of the 

fixed effects for age and RAVLT score) was also a marginally better fit than model 1 (�2 

(2) = 5.35, p = 0.069). However, model 3 did not provide a significantly better fit compared 

with model 2 (�2 (1) = 1.99, p = 0.159). Within model 2, age (t (308.7) = −12.41, p < 0.001) 

contributed significantly to the model, whereas memory score (t (309.2) = −1.82, p = 0.070) 

was only a marginally significant contributor. While this pattern does not suggest that 

typical age-related volume loss is modified by preserved memory function, it does sug-

gest that participants who are older and who also show poorer memory function will be 

expected to display relatively lower prefrontal cortex volumes compared with older par-

ticipants who exhibit relatively better memory, providing partial support for our predic-

tion. We will elaborate on this point further in the Discussion section. 

3.4. Posterior Parietal Cortex 

In our other cortical region of interest, the posterior portion of the parietal lobe (M 

posterior parietal cortex volume = 0.034; SD posterior parietal cortex volume = 0.003), the pattern of results was 

similar to the pattern observed in the prefrontal cortex. Model 2 (age and RAVLT score as 

fixed effects) fit the data significantly better than model 1 (age as the only fixed effect; �2 

(1) = 6.32, p = 0.012). Model 3 (interaction of fixed effects of age and RAVLT score) was 

also found to fit significantly better than model 1 (�2 (2) = 6.43, p = 0.040). However, model 
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3 did not provide a significantly better fit compared with model 2 (�2 (1) = 0.11, p = 0.741). 

Within model 2, both age (t (262.0) = −6.89, p < 0.001) and memory score (t (309.6) = 2.48, p 

= 0.014) were significant contributors to the overall model. We again found partial support 

for our prediction that participants’ memory performance may provide better predictive 

power over and above models with age alone, suggesting a role for memory performance 

in refining the understanding of typical age-related volume loss in episodic memory-rel-

evant regions. 

3.5. Cortical Thickness 

A comparison of fits for cortical thickness estimates (M cortical thickness = 2.505; SD cortical 

thickness = 0.101) from model 1 (age as the only fixed effect), model 2 (age and RAVLT score 

as fixed effects), and model 3 (interaction of fixed effects for age and RAVLT score) re-

vealed that the fit was not improved for the more complex models (models 2 and 3) over 

model 1 (model 1 vs. model 2: �2 (1) = 0.19, p = 0.663; model 1 vs. model 3: �2 (2) = 0.33, p 

= 0.849). These findings suggest that the relationship between memory preservation and 

cortical thickness previously observed in Super Agers [7] does not extend to normal vari-

ability in memory performance in a population of typical older adults. We return to this 

finding in the Discussion section. 

3.6. Control Region: Putamen 

In the control region of the putamen (M putamen volume = 0.006; SD putamen volume < 0.001), a 

very different pattern emerged compared with the patterns observed for the neural sub-

strates of episodic memory. Model 2 (age and RAVLT score as fixed effects) did not pro-

vide a better fit to the data over model 1 (age as the only fixed effect; �2 (1) = 3.05, p = 

0.081), nor did model 3 (interaction of age and RAVLT score; �2 (2) = 3.64, p = 0.162). Model 

3 also did not provide a significantly better fit compared with model 2 (�2 (1) = 0.587, p = 

0.444). Together, these data suggest that putamen volume is best predicted by age alone. 

Furthermore, the patterns reported here, together with those reported for the other corti-

cal and subcortical volumes above, suggests a degree of specificity for the role of memory 

scores in improving model fits in neural regions known to support episodic memory. We 

elaborate on this point further below. 

4. Discussion 

In general, our data were consistent with the idea that preserved episodic memory 

function across the adult lifespan may serve to protect against typical age-related volume 

loss in brain regions known to support episodic memory. This pattern was observed 

strongly in the hippocampus, where the age and memory score interacted to predict the 

hippocampal volume. We observed a similar but more subtle pattern in cortical regions 

known to support episodic memory performance (prefrontal cortex and posterior por-

tions of the parietal cortex), where both age and episodic memory score predicted the 

volumes in these regions and did so better than age alone. Importantly, this effect was not 

observed in a control region—the putamen—where the model with age alone best pre-

dicted the structural volume. 

Interestingly, we observed that while cortical thickness was separately associated 

with age (negatively) and memory score (positively), mixed effect models including  

memory score did not predict cortical thickness estimates better than age alone. This pat-

tern is inconsistent with the findings from Super Agers [7] and therefore suggests that 

highly superior memory performance may be necessary in order to observe significant 

associations with this global marker of brain maintenance. It is also possible that the pat-

terns observed in Super Agers may not be present in earlier stages of the adult lifespan, 

as Super Agers are adults aged 80+ years, and here we included a sample from across the 

adult lifespan (19+ years of age). In other words, the degree to which the preservation of 

episodic memory may be associated with benefits to cortical thickness may not be evident 
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until later in life. Future work should address this possibility in a sample constrained to 

older adults. 

The current analysis was conducted on a large-scale dataset collected by the Nathan 

Kline Institute. As interest in understanding individual differences among participants as 

they relate to the connection between cognition and neurobiology has increased (see [47] 

for a discussion), so too has the need for large-scale datasets to address these sorts of ques-

tions. This increasing interest in open science practices [48] and data sharing [49] presents 

opportunities for researchers to address research questions centered on individual differ-

ences by using secondary data analysis approaches. Although secondary data analysis 

may currently be less commonly used in cognitively oriented research compared with 

other subfields in psychology and neuroscience, this approach is expected to become more 

popular in the cognitive sciences as open science practices and big data approaches be-

come more common. 

These data dovetail with a wealth of literature on structural brain correlates in aging 

populations, typically depicting an average decline in both cognitive functions and struc-

tural brain volumes in older adults (see [50]). Our findings speak to the specificity of the 

brain–behavior relationship between episodic memory performance and the neural cor-

relates of episodic memory and therefore offer an interesting new perspective suggesting 

that for older adults who exhibit maintenance of episodic memory function, the negative 

impact of advancing age on the brain’s structure may be reduced. Our data speak to the 

potential for lifestyle factors, such as engaging in cognitively stimulating activities, to 

modify typical age-related trajectories in regional brain volume loss [51,52]. Importantly, 

although experience-dependent hippocampal plasticity is heightened in childhood [53], 

hippocampal plasticity is maintained throughout the lifespan. The maintenance of malle-

ability in this region raises the possibility that the structure of the hippocampus will be 

particularly sensitive to the impacts of both positive (e.g., cognitive stimulation) and neg-

ative (e.g., stress) experiences [53] across the lifespan. Thus, having more positively ori-

ented stimulation, avoiding negatively oriented stimulation, or striking an appropriate 

balance between these two possibilities, throughout development may be associated with 

the preservation of hippocampal structure later in life. Longitudinal studies may shed 

further light on the accumulation of lifetime experience as it relates to hippocampal vol-

ume maintenance in old age. 

The fact that our predicted pattern was supported most strongly in the hippocampus, 

a region known to be central for supporting episodic memory, was not surprising. What 

was somewhat surprising at first glance was the relatively more subtle support for this 

pattern in other cortical regions of interest. However, a wide variety of cognitive functions 

has been ascribed to these cortical regions, which may perhaps differ from our key cogni-

tive variable of episodic memory and may on its own have some impact on the brain’s 

structure. For example, the prefrontal cortex has been implicated in cognitive control 

[54,55], working memory [56,57], and attention [58], cognitive domains that are related to 

but are also distinct from recall of information in episodic memory per se. Similarly, the 

posterior parietal cortex has been ascribed roles in spatial attention shifts [59,60] and in 

route planning [61], both of which differ substantially from our cognitive measure of in-

terest. Additional work to account for other cognitive variables of interest may be war-

ranted to specify other potential sources that could impact the trajectories of volumetric 

preservation across the adult lifespan. 

Limitations 

In the current study, we undertook a correlational design, and therefore, by defini-

tion, this design did not include a control group. One of our main variables of interest, 

namely age, was a continuous variable, for which we also measured memory ability and 

volumes in relevant brain regions in a continuous fashion. To include a different measure 

of control in the context of this design, we tested a control brain region instead, namely 

the putamen, to provide a comparison. Together, these analyses of different sets of brain 
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regions provide insight into the specificity for the observed relationships between age and 

memory performance with the neural correlates of episodic memory; that is, our key in-

dices do not simply predict overall larger brain volumes. Instead, the predictive power 

for our variables of interest is only observed in regions that are known to subserve epi-

sodic memory function. 

One open question that our data cannot speak to is the directionality of this relation-

ship; that is, is it the case that maintaining episodic memory ability later into life confers 

protection for the relevant neurobiological structures, or does the maintenance of volumes 

in the relevant brain structures later in life support episodic memory function? Our find-

ings motivate future work involving longitudinal data that may serve to shed light on the 

directionality of this relationship. 

Another limitation of the current work to consider is that the statistical models re-

ported here did not include indicators for overall cognitive health. Importantly, all partic-

ipants included in the current sample were free from issues known to impact cognitive 

and neurological functioning, and the participants in this sample were in good physical 

health overall. Therefore, all participants in this sample would be expected to be in good 

cognitive health and within the normal range for overall cognitive functioning. Moreover, 

our findings were specific to regions known to support episodic memory function and 

did not emerge in our control region (the putamen), suggesting that the patterns reported 

here may be tied to specific cognitive processes supported by those regions (i.e., episodic 

memory) and may not emerge when using a global marker of cognition as a predictor. 

Future work may include a more mixed sample of adult participants, including those with 

mild cognitive impairment or early Alzheimer’s disease, to better capture the structural 

brain markers associated with overall cognitive health in a sample that is expected to ex-

hibit more variability in a cognitive health variable and to further investigate the specific-

ity of the patterns observed for our episodic memory performance variable and structural 

integrity in regions known to support episodic memory. 

5. Conclusions 

Our data suggest that the preservation of episodic memory function into old age is 

associated with benefits to regional brain structures known to support episodic memory. 

Memory scores may modify the typical age-related trajectory of brain volume loss, such 

as was observed in the hippocampus, or may add explanatory power to the statistical 

model over and above age alone, as was observed in the additional cortical regions of 

interest. This effect was specific to regions associated with episodic memory, as only age 

explained the volumes in our non-memory control region (i.e., putamen). Moreover, var-

iability in episodic memory performance exhibited in a typically functioning adult sample 

aged 19 years and older did not explain variance in one global brain marker: Cortical 

thickness. Together, these results suggest that the preservation of episodic memory into 

late life is associated with benefits for brain maintenance in regions known to support 

episodic memory functioning. 
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